227

Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress

Nuruzzaman, M., Sharoni, A. M., & Kikuchi, S., (2013). Roles of NAC transcription factors

in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol., 4, 248.

Oh, S. J., Kwon, C. W., Choi, D. W., Song, S. I. K., & Kim, J. K., (2007). Expression of

barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. J. Plant Biotechnol.,

5, 646–656.

Oh, S. J., Song, S. I., Kim, Y. S., Jang, H. J., Kim, M., & Kim, Y. K., (2005). Arabidopsis

CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without

stunting growth. Plant Physiol., 138, 341–351.

Pan, Y., Hu, X., Li, C., Xu, X., Su, C., Li, J., Song, H., Zhang, X., & Pan, Y., (2017). SlbZIP38,

a tomato bZIP family gene down regulated by abscisic acid, is a negative regulator of

drought and salt stress tolerance. Genes, 8, 402.

Pandey, A. S., Sharma, E., Jain, N., Singh, B., Burman, N., & Khurana, J. P., (2018). A rice

bZIP transcription factor, OsbZIP16, regulates abiotic stress tolerance when overexpressed

in Arabidopsis. J. Plant Biochem. Biotechnol., 27, 393–400.

Pandey, S. P., & Somssich, I. E., (2009). The role of WRKY transcription factors in plant

immunity. Plant Physiol., 150, 1648–1655.

Papageorgiou, G. C., & Murata, N., (1995). The unusually strong stabilizing effects of

glycinebetaine on the structure and function of oxygen-evolving photosystem II complex.

Photosynth Res., 44, 243–252.

Park, E. J., Jeknic, Z., Pino, M. T., Murata, N., & Chen, T. H. H., (2007). Glycine betaine

accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic

tomato plants against abiotic stress. Plant Cell Environ., 30, 994–1005.

Paul, J. M., Primavesi, L. F., Jhurreea, D., & Zhang, Y., (2008). Trehalose metabolism and

signaling. Annu. Rev. Plant Biol., 59, 417–441.

Peleg, Z., & Blumwald, R., (2011). Hormone balance and abiotic stress tolerance in crop

plants. Curr Opin. Plant Biol., 14, 290–295.

Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R. M., Almeraya, R., Yamaguchi-

Shinozaki, K., & Hoisington, D., (2004). Stress induced expression in wheat of the

Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse

conditions. Genome., 47, 493–500.

Puranik, S., Sahu, P. P., Srivastava, P. S., & Prasad, M., (2012). NAC proteins: Regulation and

role in stress tolerance. Trends Plant Sci., 17, 369–381.

Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L. S. P., Shinozaki, K.,

& Yamaguchi-Shinozaki, K., (2007). Regulation and functional analysis of ZmDREB2A in

response to drought and heat stresses in Zea mays L. Plant J., 50, 54–69.

Qin, Z., Hou, F., Li, A., Dong, S., Wang, Q., & Zhang, L., (2020). Transcriptome-wide

identification of WRKY transcription factor and their expression profiles under salt stress

in sweet potato (Ipomoea batatas L.). Plant Biotechnol. Rep., 14, 599–611.

Qiu, Y., & Yu, D., (2009). Over-expression of the stress induced OsWRKY45 enhances disease

resistance and drought tolerance in Arabidopsis. Environ. Exp. Bot., 65, 35–47.

Qiu, Z., Wang, X., Gao, J., Guo, Y., Huang, Z., & Du, Y., (2016). The tomato Hoffman’s

anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin

biosynthesis that is developmentally regulated and induced by low temperatures. PLoS

One, 11, e0151067.

Quan, R., Hu, S., Zhang, Z., Zhang, H., Zhang, Z., & Huang, R., (2010). Overexpression of

an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol. J.,

8, 476–488.